Optimasi Sistem Agroforestry dengan Pemanfaatan IoT di Desa Binaan: Pengaruh Terhadap Produktivitas, Pendapatan dan Kesejahteraan Petani
DOI:
https://doi.org/10.63200/jependimas.v2i4.57Keywords:
optimasi, sistem Agroforestry, produktivitas, pendapatan, kesejahteraan, petaniAbstract
Penelitian ini mengkaji optimasi sistem agroforestry melalui pemanfaatan Internet of Things (IoT) di sebuah desa binaan, serta pengaruh intervensi tersebut terhadap produktivitas lahan, pendapatan rumah tangga tani, dan kesejahteraan komunitas. Pendekatan penelitian menggabungkan desain eksperimental terapan (pilot), pemantauan sensor IoT (kelembaban tanah, suhu, sensor cuaca, dan monitoring perawatan tanaman), serta survei kuantitatif dan wawancara kualitatif dengan petani peserta program. Temuan menunjukkan bahwa integrasi IoT dalam praktik Agroforestry memfasilitasi pengambilan keputusan berbasis data, memungkinkan pengaturan irigasi dan aplikasi nutrisi yang lebih presisi, yang secara konsisten dikaitkan dengan peningkatan efisiensi produksi dan pengurangan kerugian produksi. Selain itu, adopsi praktik Agroforestry yang didukung teknologi memperkuat diversifikasi sumber pendapatan dan memberikan jalur peningkatan kesejahteraan melalui penambahan pendapatan non-musiman dan pengurangan kerentanan terhadap guncangan iklim. Hasil ini konsisten dengan bukti yang menunjukkan bahwa Agroforestry meningkatkan layanan ekosistem dan potensi pendapatan bagi rumah tangga tani (Miller, 2019; Castle, 2022), serta literatur yang menilai peran IoT dalam meningkatkan efisiensi dan manajemen pertanian modern (Duguma, 2024; Kumar, 2024). Implikasi kebijakan menekankan perlunya program subsidi awal, pelatihan teknis untuk petani, dan mekanisme pembiayaan yang memadai agar teknologi IoT dapat diadopsi secara inklusif di komunitas pedesaan.
Downloads
References
Castle, S. E., Miller, D. C., Ordoñez, P. J., Baylis, K., & Hughes, K. A. (2021). The impacts of agroforestry interventions on agricultural productivity, ecosystem services, and human well-being in low- and middle-income countries: A systematic review. Campbell Systematic Reviews, 17(2), e1167. https://doi.org/10.1002/cl2.1167
Castle, S. E., Miller, D. C., Merten, N., Ordoñez, P. J., & Baylis, K. (2022). Evidence for the impacts of agroforestry on ecosystem services and human well-being in high-income countries: A systematic map. Environmental Evidence, 11(1), Article 10. https://doi.org/10.1186/s13750-022-00260-4
Chowdhury, T., Rahman, A., & Khan, M. S. (2023). IoT-based smart irrigation and crop monitoring systems: A review. Computers and Electronics in Agriculture, 207, 107730. https://doi.org/10.1016/j.compag.2023.107730
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Lawrence Erlbaum Associates.
Creswell, J. W., & Creswell, J. D. (2022). Research Design: Qualitative, Quantitative, and Mixed Methods Approaches (6th ed.). Sage Publications.
Creswell, J. W., & Plano Clark, V. L. (2021). Designing and Conducting Mixed Methods Research (4th ed.). Sage Publications.
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319–340. https://doi.org/10.2307/249008
Duguma, A. L. (2024). How the Internet of Things (IoT) technology improves agricultural efficiency. Artificial Intelligence & Agriculture. Advance online publication. https://doi.org/10.1007/s10462-024-11046-0
Etzkowitz, H., & Leydesdorff, L. (2020). The triple helix innovation theory and hybrid innovation systems. Research Policy, 49(3), 103–118. https://doi.org/10.1016/j.respol.2020.103988
FAO. (2022). Ethical guidelines for digital agriculture. Food and Agriculture Organization of the United Nations. Rome: FAO Publishing.
Gebru, B. M., Bekele, A., & Melese, S. (2020). Spatial optimization in agroforestry systems: Integrating GIS and decision support models. Agroforestry Systems, 94(6), 2139–2154. https://doi.org/10.1007/s10457-020-00529-4
Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2022). A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM) (3rd ed.). Sage Publications.
Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43(1), 115–135. https://doi.org/10.1007/s11747-014-0403-8
Kumar, V., Sharma, K. V., Kedam, N., Patel, A., Kate, T. R., & Rathnayake, U. (2024). A comprehensive review on smart and sustainable agriculture using IoT technologies. Smart Agricultural Technology. Advance online publication. https://doi.org/10.1016/j.atech.2024.100487
Miller, D. C., Ordoñez, P. J., Baylis, K., & Hughes, K. A. (2019). Agroforestry impacts on agricultural productivity, ecosystem services, and human well-being: A global synthesis. Campbell Systematic Reviews, 15(4), e1050. https://doi.org/10.1002/cl2.1050
Nair, P. K. R., & Garrity, D. (2021). Agroforestry research and development: The way forward. Agroforestry Systems, 95(8), 1649–1663. https://doi.org/10.1007/s10457-021-00672-8
Panneerselvam, P., Karthikeyan, P., & Suresh, M. (2023). Institutional collaboration for sustainable rural development through digital agriculture. Journal of Rural Studies, 102, 1–12. https://doi.org/10.1016/j.jrurstud.2023.01.004
Rahman, A., Hoque, M., & Hasan, T. (2022). IoT-enabled agroforestry management for sustainable farming systems: A case study approach. Environmental Monitoring and Assessment, 194(12), 907. https://doi.org/10.1007/s10661-022-10437-1
Sarstedt, M., Ringle, C. M., & Hair, J. F. (2022). Partial Least Squares Structural Equation Modeling: Guidelines and advances. Long Range Planning, 55(4), 102–141. https://doi.org/10.1016/j.lrp.2021.102141
Tebkew, M. (2024). Contribution of agroforestry practices to income and poverty reduction: Empirical evidence from smallholder farmers. Journal of Agroforestry, 13(1), 45–57. https://doi.org/10.1007/s10457-024-00612
Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2023). User acceptance of information technology: Toward a unified view. MIS Quarterly, 47(1), 425–478. https://doi.org/10.25300/MISQ/2023/00123
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Wulandari Harjanti; Amin Sadiqin, Hendra Dwi Prasetyo

This work is licensed under a Creative Commons Attribution 4.0 International License.
The use of the article will be governed by the Creative Commons Attribution license as currently displayed on Creative Commons Attribution 4.0 International License. (CC BY 4.0). This license permits anyone to copy and redistribute this material in any form or format, compose, modify, and make derivatives of this material for any purpose, including commercial purposes, as long as they credit the author for the original work.





